
Flask-Themes2 Documentation
Release 0.1.2

Christopher "plausibility" Carter, Drew Lustro, Matthew "LeafStorm" Frazier

May 28, 2014

Contents

1 Writing Themes 3
1.1 Writing Templates . 3
1.2 info.json Fields . 4
1.3 Tips for Theme Writers . 5

2 Using Themes in Your Application 7
2.1 Theme Loaders . 7
2.2 Rendering Templates . 8
2.3 Selecting Themes . 8
2.4 Tips for Application Programmers . 8

3 API Documentation 11
3.1 Loading Themes . 13

i

ii

Flask-Themes2 Documentation, Release 0.1.2

Flask-Themes2 makes it easy for your application to support a wide range of appearances.

• Writing Themes
– Writing Templates
– info.json Fields
– Tips for Theme Writers

• Using Themes in Your Application
– Theme Loaders
– Rendering Templates
– Selecting Themes
– Tips for Application Programmers

• API Documentation
– Loading Themes

Contents 1

Flask-Themes2 Documentation, Release 0.1.2

2 Contents

CHAPTER 1

Writing Themes

A theme is simply a folder containing static media (like CSS files, images, and JavaScript) and Jinja2 templates, with
some metadata. A theme folder should look something like this:

my_theme
-- info.json
-- license.txt
-- static
| -- style.css
-- templates

-- layout.html
-- index.html

The info.json file contains the theme’s metadata, so that the application can provide a nice switching interface if
necessary. license.txt is optional and contains the full text of the theme’s license. static is served directly to
clients, and templates contains the Jinja2 template files.

Note that exactly what templates you need to create will vary between applications. Check the application’s docs (or
source code) to see what you need.

1.1 Writing Templates

Flask uses the Jinja2 template engine, so you should read its documentation to learn about the actual syntax of the
templates.

All templates loaded from a theme will have a global function named theme available to look up the theme’s tem-
plates. For example, if you want to extend, import, or include another template from your theme, you can use
theme(template_name), like this:

{% extends theme(’layout.html’) %}
{% from theme(’_helpers.html’) import form_field %}

If the template you requested doesn’t exist within the theme, it will fall back to using the application’s template. If
you pass false as the second parameter, it will only return the theme’s template.

{% include theme(’header.html’, false) %}

You can still import/include templates from the application, though. Just use the tag without calling theme.

{% from ’_helpers.html’ import link_to %}
{% include ’_jquery.html’ %}

You can also get the URL for the theme’s media files with the theme_static function:

3

http://jinja.pocoo.org/2/documentation/templates

Flask-Themes2 Documentation, Release 0.1.2

<link rel=stylesheet href="{{ theme_static(’style.css’) }}">

If you want to get information about the currently active theme, you can do that with the theme_get_info function:

This theme is
{{ theme_get_info(’name’) }}

If you want to include things which might or might not be in your theme, you can do something like this:

This theme is
{{ theme_get_info(’name’) }}
{%- if theme_get_info(’version’) != "" %}
({{ theme_get_info(’version’) }})

{% endif -%}

By default, this will first check if that’s direct theme information, then it will check if it’s part of the options
dictionary of the theme.

1.2 info.json Fields

application [required] This is the application’s identifier. Exactly what identifier you need to use varies between
applications.

identifier [required] The theme’s identifier. It should be a Python identifier (starts with a letter or underscore,
the rest can be letters, underscores, or numbers) and should match the name of the theme’s folder.

name [required] A human-readable name for the theme.

author [required] The name of the theme’s author, that is, you. It does not have to include an e-mail address, and
should be displayed verbatim.

description A description of the theme in a few sentences. If you can write multiple languages, you can include
additional fields in the form description_lc, where lc is a two-letter language code like es or de. They
should contain the description, but in the indicated language.

website The URL of the theme’s Web site. This can be a Web site specifically for this theme, Web site for a
collection of themes that includes this theme, or just the author’s Web site.

license A simple phrase indicating your theme’s license, like GPL, MIT/X11, Public Domain, or Creative
Commons BY-SA 3.0. You can put the full license’s text in the license.txt file.

license_url If you don’t want to include the full text in the license.txt file, you can include a URL for
a Web site where the text can be viewed. This is good for long licenses like the GPL or Creative Commons
licenses.

preview A preview image for the theme. This should be the filename for an image within the static directory.

doctype The version of HTML used by the theme. It can be html4, html5, or xhtml. The application can use
this to do things like switch the output format of a markup generator. (The default if this is left out is html5 to
be safe. HTML5 is used by the majority of Flask users, so it’s best to use it.)

version This is simply to make it easier to distinguish between what version of your theme people are using. It’s
up to the theme/layout to decide whether or not to show this, though.

options If this is given, it should be a dictionary (object in JSON parlance) containing application-specific options.
You will need to check the application’s docs to see what options it uses. (For example, an application like
a pastebin or wiki that highlights source code may want the theme to specify a default Pygments style in the
options.)

4 Chapter 1. Writing Themes

http://pygments.org/

Flask-Themes2 Documentation, Release 0.1.2

1.3 Tips for Theme Writers

• Always specify a doctype.

• Remember that you have to use double-quotes with strings in JSON.

• Look at the non-theme templates provided with the application. See how they interact.

• Remember that most of the time, you can alter the application’s appearance completely just by changing the
layout template and the style.

1.3. Tips for Theme Writers 5

Flask-Themes2 Documentation, Release 0.1.2

6 Chapter 1. Writing Themes

CHAPTER 2

Using Themes in Your Application

To set up your application to use themes, you need to use Themes (flask.ext.themes2.Themes), in one of two
ways:

The first way
app = Flask(__name__)
Themes(app, app_identifier="...")

The second way
app = Flask(__name__)
t = Themes()
t.init_themes(app, app_identifier="...")

The first is simply a quicker way of the second, as it will automatically call init_themes on your app.

This does three things:

• Adds a ThemeManager instance to your application as app.theme_manager.

• Registers the theme and theme_static globals with the Jinja2 environment.

• Registers the _themes module or blueprint (depending on the Flask version) to your application, by default
with the URL prefix /_themes (you can change it).

Warning: Since the “Blueprints” mechanism of Flask 0.7 causes headaches in module compatibility mode,
init_themes will automatically register _themes as a blueprint and not as a module if possible. If this causes
headaches with your application, then you need to either (a) upgrade to Flask 0.7 or (b) set Flask<0.7 in your
requirements.txt file.

2.1 Theme Loaders

init_themes takes a few arguments, but the one you will probably be using most is loaders, which is a list of theme
loaders to use (in order) to find themes. The default theme loaders are:

• packaged_themes_loader, which looks in your application’s themes directory for themes (you can use this to
ship one or two default themes with your application)

• theme_paths_loader, which looks at the THEME_PATHS configuration setting and loads themes from each
folder therein

It’s easy to write your own loaders, though - a loader is just a callable that takes an application instance and returns an
iterable of Theme instances. You can use the load_themes_from helper function to yield all the valid themes contained
within a folder. For example, if your app uses an “instance folder” like Zine that can have a “themes” directory:

7

http://zine.pocoo.org/

Flask-Themes2 Documentation, Release 0.1.2

def instance_loader(app):
themes_dir = os.path.join(app.instance_root, ’themes’)
if os.path.isdir(themes_dir):

return load_themes_from(themes_dir)
else:

return ()

2.2 Rendering Templates

Once you have the themes set up, you can call in to the theme machinery with render_theme_template. It works like
render_template, but takes a theme parameter before the template name. Also, static_file_url will generate a URL to
the given static file.

When you call render_theme_template, it sets the “active template” to the given theme, even if you have to fall back
to rendering the application’s template. That way, if you have a template like by_year.html that isn’t defined by
the current theme, you can still

• extend ({% extends theme(’layout.html’) %})

• include ({% include theme(’archive_header.html’) %})

• import ({% from theme(’_helpers.html’) import show_post %})

templates defined by the theme. This way, the theme author doesn’t have to implement every possible template - they
can define templates like the layout, and showing posts, and things like that, and the application-provided templates
can use those building blocks to form the more complicated pages.

2.3 Selecting Themes

How exactly you select the theme will vary between applications, so Flask-Themes2 doesn’t make the decision for
you. If your app is any larger than a few views, though, you will probably want to provide a helper function that selects
the theme based on whatever (settings, logged-in user, page) and renders the template. For example:

def get_current_theme():
if g.user is not None:

ident = g.user.theme
else:

ident = current_app.config.get(’DEFAULT_THEME’, ’plain’)
return get_theme(ident)

def render(template, **context):
return render_theme_template(get_current_theme(), template, **context)

Warning: Make sure that you only get Theme instances from the theme manager. If you need to create a Theme
instance manually outside of a theme loader, that’s a sign that you’re doing it wrong. Instead, write a loader that
can load that theme and pass it to init_themes, because if the theme is not loaded by the manager, then its templates
and static files won’t be available, which will usually lead to your application breaking.

2.4 Tips for Application Programmers

• Provide default templates, preferably for everything. Use simple, unstyled HTML.

8 Chapter 2. Using Themes in Your Application

Flask-Themes2 Documentation, Release 0.1.2

• If you find yourself repeating design elements, put them in a macro in a separate template. That way, theme
authors can override them more easily.

• Put class names or IDs on any elements that the theme author may want to style. (And by that I mean all of
them.) That way they won’t have to override the template unnecessarily if all they want to do is right-align the
meta information.

2.4. Tips for Application Programmers 9

Flask-Themes2 Documentation, Release 0.1.2

10 Chapter 2. Using Themes in Your Application

CHAPTER 3

API Documentation

This API documentation is automatically generated from the source code.

class flask.ext.themes2.Themes(app=None, **kwargs)
This is the main class you will use to interact with Flask-Themes2 on your app.

It really only implements the bare minimum, the rest is passed through to other methods and classes.

__init__(app=None, **kwargs)
If given an app, this will simply call init_themes, and pass through all kwargs to init_themes, making it
super easy.

Parameters

• app – the ~flask.Flask instance to setup themes for.

• **kwargs – keyword args to pass through to init_themes

init_themes(app, loaders=None, app_identifier=None, manager_cls=None,
theme_url_prefix=’/_themes’)

This sets up the theme infrastructure by adding a ThemeManager to the given app and registering the
module/blueprint containing the views and templates needed.

Parameters

• app – The ~flask.Flask instance to set up themes for.

• loaders – An iterable of loaders to use. It defaults to packaged_themes_loader and
theme_paths_loader.

• app_identifier – The application identifier to use. If not given, it defaults to the app’s
import name.

• manager_cls – If you need a custom manager class, you can pass it in here.

• theme_url_prefix – The prefix to use for the URLs on the themes module. (Defaults to
/_themes.)

class flask.ext.themes2.Theme(path)
This contains a theme’s metadata.

Parameters path – The path to the theme directory.

application = None
The application identifier given in the theme’s info.json. Your application will probably want to validate
it.

11

Flask-Themes2 Documentation, Release 0.1.2

author = None
The author’s name, as given in info.json. This may or may not include their email, so it’s best just to
display it as-is.

description = None
The human readable description. This is the default (English) version.

doctype = None
The theme’s doctype. This can be html4, html5, or xhtml with html5 being the default if not specified.

identifier = None
The theme’s identifier. This is an actual Python identifier, and in most situations should match the name of
the directory the theme is in.

jinja_loader
This is a Jinja2 template loader that loads templates from the theme’s templates directory.

license = None
A short phrase describing the license, like “GPL”, “BSD”, “Public Domain”, or “Creative Commons BY-
SA 3.0”.

license_text
The contents of the theme’s license.txt file, if it exists. This is used to display the full license text if
necessary. (It is None if there was not a license.txt.)

license_url = None
A URL pointing to the license text online.

localized_desc = None
This is a dictionary of localized versions of the description. The language codes are all lowercase, and the
en key is preloaded with the base description.

name = None
The theme’s name, as given in info.json. This is the human readable name.

options = None
Any additional options. These are entirely application-specific, and may determine other aspects of the
application’s behavior.

path = None
The theme’s root path. All the files in the theme are under this path.

preview = None
The theme’s preview image, within the static folder.

static_path
The absolute path to the theme’s static files directory.

templates_path
The absolute path to the theme’s templates directory.

version = None
The theme’s version string.

website = None
The URL to the theme’s or author’s Web site.

flask.ext.themes2.render_theme_template(theme, template_name, _fallback=True, **con-
text)

This renders a template from the given theme. For example:

return render_theme_template(g.user.theme, ’index.html’, posts=posts)

12 Chapter 3. API Documentation

Flask-Themes2 Documentation, Release 0.1.2

If _fallback is True and the template does not exist within the theme, it will fall back on trying to render the
template using the application’s normal templates. (The “active theme” will still be set, though, so you can try
to extend or include other templates from the theme.)

Parameters

• theme – Either the identifier of the theme to use, or an actual Theme instance.

• template_name – The name of the template to render.

• _fallback – Whether to fall back to the default

flask.ext.themes2.static_file_url(theme, filename, external=False)
This is a shortcut for getting the URL of a static file in a theme.

Parameters

• theme – A Theme instance or identifier.

• filename – The name of the file.

• external – Whether the link should be external or not. Defaults to False.

flask.ext.themes2.get_theme(ident)
This gets the theme with the given identifier from the current app’s theme manager.

Parameters ident – The theme identifier.

flask.ext.themes2.get_themes_list()
This returns a list of all the themes in the current app’s theme manager, sorted by identifier.

3.1 Loading Themes

class flask.ext.themes2.ThemeManager(app, app_identifier, loaders=None)
This is responsible for loading and storing all the themes for an application. Calling refresh will cause it to
invoke all of the theme loaders.

A theme loader is simply a callable that takes an app and returns an iterable of Theme instances. You can
implement your own loaders if your app has another way to load themes.

Parameters

• app – The app to bind to. (Each instance is only usable for one app.)

• app_identifier – The value that the info.json’s application key is required to have. If you
require a more complex check, you can subclass and override the valid_app_id method.

• loaders – An iterable of loaders to use. The defaults are packaged_themes_loader and
theme_paths_loader, in that order.

bind_app(app)
If an app wasn’t bound when the manager was created, this will bind it. The app must be bound for the
loaders to work.

Parameters app – A ~flask.Flask instance.

list_themes()
This yields all the Theme objects, in sorted order.

loaders = None
This is a list of the loaders that will be used to load the themes.

3.1. Loading Themes 13

Flask-Themes2 Documentation, Release 0.1.2

refresh()
This loads all of the themes into the themes dictionary. The loaders are invoked in the order they are
given, so later themes will override earlier ones. Any invalid themes found (for example, if the application
identifier is incorrect) will be skipped.

themes
This is a dictionary of all the themes that have been loaded. The keys are the identifiers and the values are
Theme objects.

valid_app_id(app_identifier)
This checks whether the application identifier given will work with this application. The default imple-
mentation checks whether the given identifier matches the one given at initialization.

Parameters app_identifier – The application identifier to check.

flask.ext.themes2.packaged_themes_loader(app)
This theme will find themes that are shipped with the application. It will look in the application’s root path for a
themes directory - for example, the someapp package can ship themes in the directory someapp/themes/.

flask.ext.themes2.theme_paths_loader(app)
This checks the app’s THEME_PATHS configuration variable to find directories that contain themes. The
theme’s identifier must match the name of its directory.

flask.ext.themes2.load_themes_from(path)
This is used by the default loaders. You give it a path, and it will find valid themes and yield them one by one.

Parameters path – The path to search for themes in.

14 Chapter 3. API Documentation

	Writing Themes
	Writing Templates
	info.json Fields
	Tips for Theme Writers

	Using Themes in Your Application
	Theme Loaders
	Rendering Templates
	Selecting Themes
	Tips for Application Programmers

	API Documentation
	Loading Themes

